Inelastic phonon interactions at solid–graphite interfaces

John C. Duda a,*, Patrick E. Hopkins b,1, Thomas E. Beechem b, Justin L. Smoyer a, Pamela M. Norris a,2

a Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States
b Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, United States

Article history:
Received 26 October 2009
Accepted 8 January 2010
Available online 20 January 2010

Keywords:
Inelastic
Graphite
Thermal boundary conductance
Phonon
Transport
Interface

The presented model predicts thermal boundary conductance at interfaces where one material comprising the junction is characterized by high elastic anisotropy. In contrast to previous approaches, the current methodology accounts for contributions from inelastic scattering through consideration of multiple-phonon interactions. Inelastic contributions become significant as the temperature, as well as the degree of acoustic mismatch between the materials, increases. Inclusion of the inelastic interactions is necessary for a variety of interfacial systems including the metal–graphite boundary examined here. Improvement is shown over existing approaches that address only elastic scattering as both three- and four-phonon interactions significantly augment the transport.

© 2010 Elsevier Ltd. All rights reserved.

0749-6036/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.spmi.2010.01.001
to accurately predict h_{BD} at metal–carbon interfaces is important for the optimization of these hybrid material systems in thermal applications.

Predictive models do exist for thermal transport at metal–CNT [7] and metal–graphite interfaces [8], but they consider only elastic phonon scattering events at the interface, as they are based on the the diffuse mismatch model (DMM) [9]. The role of inelastic scattering during diffusive interfacial transport processes at interfaces characterized by large acoustic mismatch has been demonstrated both experimentally [5,10] and through the use of classical molecular dynamics [11]. It is reasonable to assume that inelastic scattering events contribute significantly during transport processes at metal–CNT and metal–graphite interfaces due to the large acoustic mismatch between these materials (the maximum phonon frequencies of graphite [12] are several times that of most metals).

Recently, a model has been presented to directly consider multiple-phonon processes contributing to inelastic scattering at solid–solid interfaces [13]. Through conservation of energy and phonon population, this model allows for the decay of high-energy phonons at frequency $n\omega$ into n lower-energy phonons each at frequency ω, where n is an integer. However, this model assumes that isotropic materials comprise both sides of the interface. At the interface between metal and graphite or CNTs, this is clearly not the case. The model presented here accounts for inelastic scattering at interfaces where one material comprising the interface is characterized by high elastic anisotropy. The metal–graphite interface will be considered during the development of this model, but this approach can be easily extended to other anisotropic materials.

The extreme anisotropy of graphite is evident when examining the thermal conductivity, where the a-axis (in the basal plane) and c-axis (perpendicular to the basal plane) values differ by three to four orders of magnitude [14,15]. As a result of this anisotropy, the phonon dispersion relationships for graphite are quite complicated. However, at temperatures above cryogenic, the strong anisotropy of graphite allows for certain simplifying assumptions. The interaction between individual monolayers in the graphite structure can be described as a van der Waals type interaction, which is associated with low-frequency vibrations. Dispersion diagrams of graphite show that acoustic interlayer vibrations exist at frequencies below 3 THz, one to two orders of magnitude below the longitudinal and transverse cutoff frequencies within the basal plane [12]. Additionally, studies examining both CNTs and graphite have indicated that interlayer acoustic modes saturate at temperatures above 50 K [7,16].

As a result of this weak interlayer vibrational coupling, an effective Debye density of states can be used to describe bulk graphite at temperatures above cryogenic [8,15]. The formulation of an effective density of states rests on describing graphite by its basal- or cross-plane attributes, depending on the property of concern. Developing the effective density of states for predictions of h_{BD}, one can consider first a single monolayer of graphite, described by a two-dimensional Debye density of states. Scaling this density of states by N, or the number of two-dimensional subsystems per unit length, generates an effective density of states for the graphite system. The density of states for bulk graphite thus becomes

$$D_{\text{eff}}(\omega, v_{a,j}) = N \frac{\omega}{2\pi v_{a,j}^2} = \frac{\omega}{2\pi v_{a,j}^2} \frac{1}{d},$$

where d is the interlayer spacing and $v_{a,j}$ is the polarization-specific Debye phonon group velocity in the basal plane. Therefore, the thermal flux in graphite perpendicular to the interface is given by

$$q_{\text{g},j,z} = \pi \sum_j \int_{\omega_{a,j}} \hbar \omega v_{z,j} D_{\text{eff}}(\omega, v_{a,j}) f d\omega,$$

here \hbar is Planck’s constant divided by 2π, ω is the phonon angular frequency, and f is the Bose–Einstein distribution function. The subscript z denotes the orientation of the graphite relative to the interface and can take on two values, either a (basal planes perpendicular to the interface, transport along the basal planes), or c (basal planes parallel to the interface, transport perpendicular to the planes). Note that the density of states and cutoff frequency do not depend on the graphite orientation since the vibrational modes are assumed only to exist in the basal plane. Still, the propagation velocity does depend on the orientation. Three modes of vibration are still assumed within graphite (one longitudinal, two degenerate transverse) for either orientation and are taken as $v_{a,1} = 23,600$ m/s,
The three-phonon transmission probability, we perform a similar balance shown in Eq. (5). Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13]. Although this abandons the pure definition of diffuse scattering, that a phonon of mode \(j \) can only couple with another phonon of the same mode. This development is necessary, however, in order to insure phonon number conservation for both the elastic and the higher-order processes [13].
that two phonons of energy ω in the metal will couple with a phonon of energy 2ω in the substrate, so that the balance equation becomes

$$2\hbar\omega v_{1,j} D_1(\omega, v_{1,j}) f(\omega) \zeta_{(3),j}^{1\rightarrow g,z} (1 - \zeta_{(2),j}^{1\rightarrow g,z})$$

$$= \hbar(2\omega) v_{2,j} D_{\text{eff}}(2\omega, v_{a,j}) f(2\omega) (1 - \zeta_{(3),j}^{1\rightarrow g,z}) \zeta_{(2),j}^{1\rightarrow g,z},$$

(7)

Fig. 1. Temperature-dependent h_{BD} at Al–graphite and Au–graphite interfaces for both orientations of graphite, as well as the individual contributions from two-, three-, and four-phonon processes. Higher-order inelastic phonon processes become more significant to the overall value of h_{BD} with increased temperature, as well as increased acoustic mismatch (the Au–graphite mismatch is greater than that of Al–graphite).
when \(0 < \omega \leq \frac{1}{2} \omega_{D,j}\) and

\[
2\hbar \nu_1 \nu_2 D_1 (\omega, \nu_1) f(\omega) \zeta^{1-g,z}_j (1 - \zeta^{1-g,z}_j) = \hbar (2\omega) \nu_2 J_{\text{eff}} (2\omega, \nu_{a,j}) f(2\omega) \zeta^{g,z}_j^{-1},
\]

(8)

when \(\frac{1}{2} \omega_{D,j} < \omega \leq \omega_{D,j}\), where \(f(2\omega) = [\exp (\hbar (2\omega)/k_B T) - 1]^{-1}\). This gives a three-phonon transmission coefficient, defined as

\[
\zeta^{1-g,z}_j = \begin{cases} \\
\frac{\nu_{a,j} \frac{1}{\nu_2} f(2\omega) \zeta^{1-g,z}_j}{\nu_{a,j} \frac{1}{\nu_2} f(\omega) (1 - \zeta^{1-g,z}_j) + \nu_{a,j} \frac{1}{\nu_2} f(2\omega) \zeta^{1-g,z}_j}, & 0 < \omega \leq \frac{1}{2} \omega_{D,j} \\
\frac{\nu_{a,j} \frac{1}{\nu_2} f(2\omega) \zeta^{1-g,z}_j}{\nu_{a,j} \frac{1}{\nu_2} f(\omega) (1 - \zeta^{1-g,z}_j) + \nu_{a,j} \frac{1}{\nu_2} f(2\omega) \zeta^{1-g,z}_j}, & \frac{1}{2} \omega_{D,j} < \omega \leq \omega_{D,j}.
\end{cases}
\]

(9)

The development of the four-phonon process follows in a similar fashion, but has been omitted from this work for the sake of brevity. In general, for an \(n\)-phonon process, there will be \(n - 1\) frequency intervals when calculating \(\zeta^{1-g,z}_j\) [13]. In this work, the discussion is limited to four and fewer phonon processes, as the contributions of higher-order processes do not significantly contribute to \(h_{BD}\) at lower temperatures [13]. While this treatment of inelastic scattering may not be exact, it serves as a good first approximation to the relative contribution of inelastic processes to thermal transport at interfaces.

Predicted temperature-dependent \(h_{BD}\) at Al–graphite and Au–graphite interfaces for both orientations of graphite, as well as the individual contributions from two-, three-, and four-phonon processes, are shown in Fig. 1. By examining the plots, it is apparent that considerations of inelastic processes are more important as the acoustic mismatch and temperature increase (Al has a lower Debye temperature than Al, 165 K and 428 K, respectively [17], and is therefore more acoustically mismatched with graphite). Table 1 lists the contributions of each process, as well as the total predicted and experimental values [19] for metal-to-c-axis \(h_{BD}\) at 300 K. In general, it is apparent that this model, in which inelastic processes are considered, agrees better with the experimental data than the two-phonon process alone [8], reducing the underprediction from 39% (elastic only) to 18% (up to four-phonon inelastic).

In summary, a model has been derived to account for multiple-phonon inelastic scattering processes in predictions of \(h_{BD}\) at the interfaces between isotropic and anisotropic materials. Example calculations are performed for Al–graphite and Au–graphite interfaces. Improved agreement between the model and experimental data has been shown for the Al–graphite interface. The higher-order phonon processes show an increasing contribution to the overall \(h_{BD}\) as the materials comprising the interface become increasingly vibrationally dissimilar.

Acknowledgements

J.C.D., J.L.S., and P.M.N. acknowledge the financial support of the Office of Naval Research through a MURI grant (Grant No. N00014-07-1-0723) and the financial support of the Air Force Office of Scientific Research (Grant No. FA9550-09-1-0245). J.C.D. is greatly appreciative of financial support from the National Science Foundation through the Graduate Research Fellowship Program. P.E.H. is grateful for funding from the LDRD program office through the Sandia National Laboratories Harry S. Truman Fellowship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

References

